MBB/HSCI 478-3: Molecular Epidemiology of Infectious Disease

Pre or Co-requisites: MBB 331 or HSCI/MBB 326 with a minimum grade of C, or HSCI 338 with a minimum grade of C-. Students with credit for HSCI 478 may not complete MBB 478 for further credit.

Final Exam: In person during the final exam period

COURSE DESCRIPTION: This senior seminar course will provide a broad overview of the application of modern molecular and genomics methods to infectious disease epidemiology. Topics will include the identification, classification, characterization, and monitoring of pathogens in human populations; the application of molecular methods to screening, prevention and treatment of infectious diseases; and the analysis of molecular and genomics data for disease. Globally relevant diseases will be highlighted.

The SFU Calendar describes the course as follows: Application of modern molecular methods to epidemiological questions. Globally relevant and emerging infectious diseases will be highlighted. Students with credit for HSCI 432 in 2010 may not complete HSCI 478 for further credit.

COURSE OBJECTIVES:

By the end of the course, students will have a strong foundational knowledge of molecular and genomic epidemiology methods, the distribution of host and pathogen genetic diversity in populations, and an understanding of how genetic factors influence disease risk and outcomes. The assignments for this course will provide students with the opportunity to develop, or hone, their presentation skills, their ability to perform primary literature searches, as well as improve their reading, interpreting, critiquing and summarizing of primary research articles. Hands-on computational data analysis assignments are designed to show students state-of-the-art genomic epidemiology analytic solutions.

- Explain the techniques and applications of modern laboratory methods, including phylogenetic analyses, to the identification, surveillance, prevention, and treatment of infectious diseases

- Describe how host and pathogen genetic variation is distributed globally and enumerate
- examples of how such variation influences disease acquisition risk and disease outcomes
- Explain how information on pathogen genetic variation is (and can be) incorporated in the design
- of intervention strategies (e.g.: vaccines, therapeutics)
- Conduct basic literature searches
- Conduct basic genomic epidemiological data analysis

- Demonstrate competence in reading, interpreting and critiquing primary research articles and present the material in an accessible manner

CORE COMPETENCIES:

Molecular Methods for Microbial Typing – Primary Microbial Phylogenetics and Phylogenomics – Primary Basic Molecular and genomic Epidemiology – Primary Public Health Microbiology - Primary Molecular Biology – reinforced Microbial Population Genetics – reinforced

TEACHING FORMAT: There will be one 3-hour class each week that will include a lecture by the course instructor or guest lecturer, discussion, in-class activities and/or student presentations.

REQUIRED TEXT: None.

Required readings will be in the form of primary and review articles in scientific journals. These will be made available on Canvas prior to the lecture. This will include PowerPoint versions of the lectures, links to online materials, announcements, and other information. PowerPoint versions of the lectures will be provided by 5pm the day before the lecture. Please check Canvas on a regular basis to ensure you have updated course information.

ASSESSMENTS AND GRADING:

This course comprises a combination of lectures, demoes, in class and online discussions. Six in class short quizzes (2-3 questions / 15 min) at the beginning of the classes (see dates below) are designed to help you keep up with the material. Three take-home computational assignments are designed to help you learn hands-on genomic epidemiology analysis.

1. Assignment #1:	Molecular Typing – in-silico MLST
2. Assignment #2:	Genomic Variant Analysis - SNP
3. Assignment #3:	Genome-wide Association Study

3. Oral Presentation: Peer-reviewed paper related to modern molecular or genomic epidemiology 3-4 min per person on a paper in a

4. Quizzes:

The quizzes will cover material presented in the preceding one or two weeks (non-cumulative) to help you demonstrate your understanding of the course concepts. The test will consist of multiple choice and true/false.

5. Final Exam

The final exam will be based on all course lectures and readings. The exam will consist of short and long answer questions.

6. Mark Breakdown

6 Quizzes (5% each) - missing quizzes count towards final – 30% 3 x Genomic Epi Data Analysis Assignments (10% each) - 30% Final Exam – 30% (up to 60% if there are missing quizzes) Participation – 10%

COURSE SCHEDULE:

Please complete the assigned readings before each class as lectures will be presented based on the assumption that you have read these materials.

Class Sc	hedule:
-----------------	---------

Class Schedule:		
Date (week)	First Half (2:30-3:45)	Second Half (4:00-5:20)
September 12 2022	1a Welcome	1b Introduction to Molecular Epidemiology
September 19 2022	2a Pathogen Evolution - bacterial	2b Pathogen Evolution - viral
September 26 2022	3a Population Genetics Discussion	3b Host Variations and Immunity
October 3 2022	Quiz 1 (5%) Population Genetics 4a Traditional Molecular Epidemiology Techniques	4b Modern Molecular Epidemiology Techniques Assignment 1 (Molecular Typing Using in-silico MLST)
October 10 2022 (Thanksgiving)	No Class	No Class

October 17 2022	Quiz 2 (5%) Molecular Epi Techniques 5a Phylogenetic Analysis	5b Phylogenetic Analysis Discussion and Demo
October 24 2022	Quiz 3 (5%) Phylogenetics 6a Genomic Epidemiology	6b Genomic Epidemiology Discussion and Demo Assignment 2 (Genomic Epidemiology - SNP)
October 31 2022	7a Genomic Epidemiology of MTB	7b Genomic Epidemiology of MTB Discussion
November 7 2022	Quiz 4 (5%) Genomic Epi (6a+7a) 8a Genomic Epidemiology of Foodborne Pathogens	8b Genomic Epidemiology of Foodborne Pathogens Discussion
November 14 2022	9a Bacterial GWAS	9b Bacterial GWAS Discussion and Demo Assignment 3 (Bacterial GWAS)
November 21 2022	Quiz 5 (5%) Bacterial GWAS 10a Genomic Epidemiology of Influenza Viruses	10b Genomic Epidemiology of Influenza Viruses Discussion
November 28 2022	Quiz 6 (5%) Genomic Epi of Influenza 11a Genomic Epidemiology of SARS-CoV-2 Virus	11b Genomic Epidemiology of SARS- CoV-2 Virus Discussion
December 5 2022	12a Future of Genomic Epidemiology	Course Feedback and Exam Review

NOTE: The instructor may make changes to this syllabus if necessary, within Faculty/University regulations. This includes the possibility of scaling final grades, if they are too high or too low, to meet FHS and SFU grading guidelines.